164t-16t^2=0

Simple and best practice solution for 164t-16t^2=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 164t-16t^2=0 equation:



164t-16t^2=0
a = -16; b = 164; c = 0;
Δ = b2-4ac
Δ = 1642-4·(-16)·0
Δ = 26896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{26896}=164$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(164)-164}{2*-16}=\frac{-328}{-32} =10+1/4 $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(164)+164}{2*-16}=\frac{0}{-32} =0 $

See similar equations:

| 3+25t-5t^2=0 | | 126t-16t^2=0 | | 36+12x-3=21x-3 | | 145+2x+53=180 | | 2(−4s+2)=−5s−10. | | 3+15t-5t^2=0 | | 9(x)^(2)=441 | | 12n+3=-12 | | 20x/6+-8/6=12 | | 6=(10-z) | | 184-y=239 | | 80=195-x | | 37=-u+166 | | 4(a-2)+a=7a-4 | | 4(a-2)+a=3a-5 | | 4(a-2)+a=7a-3 | | 6(x+2)=6(x+13) | | 4(a-2)+a=7a-5 | | 14-y=215 | | y+2=14-y | | a÷3=6 | | 0.2035=(0.000536x/0.033533)+0.045522x | | (4x-15)+(3x-15)=180 | | x+x/10=2/5 | | 0.06(y-6)+0.20y=0.16y-0.9 | | 4x-15+3x-15=180 | | 4(5z+1)-8=156 | | 6/7x+(x-4)=x | | 4x-3/5=25 | | 2x+18-x=7+5x-5 | | 3z=-12+32 | | 9x+0=8x+2 |

Equations solver categories